INSTITUT DES SCIENCES ET INGENIERIE CHIMIQUES

EPFL ISIC Prof. Jérôme Waser Bât BCH 4306 CH 1015 Lausanne Téléphone : Fax : E-mail : Site web : +4121 693 93 88 +4121 693 97 00 jerome.waser@epfl.ch http://lcso.epfl.ch

Examen Atomes, ions, molécules et fonctions I Solutions Lundi 16 janvier 2012, 8h15 – 11h15

Exercice 1 (9 points)

configuration différente mais pas image miroir: diastéréoisomères

configuration différente mais pas image miroir: diastéréoisomères

[Barème: 2 points pour la conversion des molécules dans la même projection, 1 point pour la réponse avec justification]

Exercice 2 (18 points)

Dans les molécules suivantes, indiquez les stéréocentres par un astérisque. Donnez la configuration absolue de ces stéréocentres en utilisant les stéréodescripteurs R et S.

[Barème: 0.5 point pour la réponse à chaque centre et 1 point pour le dessin avec priorité et sens de rotation pour chaque centre, -0.5 point si l'azote est indiqué comme chiral]

Exercice 3 (20 points)

Pour chaque série, ranger les composés par ordre d'acidité croissante. Justifiez vos réponses.

1) H₂SO₄, H₂SO₃

$$H_2SO_3 < H_2SO_4$$

[Barème: 1 point pour l'ordre correct, 2 points pour le dessin des structures de résonance, 1 points pour la conséquence sur l'acidité. (Réponse alternative: un oxygène de plus sur H₂SO₄, donc charge partielle positive plus forte et acide plus fort: 1 point accordé, correct mais effet faible.)]

[Barème: 1 point pour l'ordre correct, 1.5 points pour le dessin des structures de résonance, 1.5 points pour la conséquence sur l'acidité. (1 point accordé si seulement l'effet inductif est considéré.)]

3) HCI, HI, HBr, HF

HF < HCl < HBr < HI, car : taille des atomes: F < Cl < Br < I et charge négative des bases mieux stabilisée sur grand atomes, donc acides plus forts

[Barème: 1 point pour l'ordre correct, 2 points pour la taille des atomes et 1 points pour la conséquence sur l'acidité]

4) OH OH OH Pas de résonance pour la base
$$\Rightarrow$$
 moins stable, acide plus faible \Rightarrow moins stable, acide plus faible \Rightarrow tructures de résonance en plus dans le cycle \Rightarrow plus stable, acide plus fort \Rightarrow structure de résonance supplémentaire très favorable (- sur O, électronégatif) \Rightarrow plus stable, acide plus fort \Rightarrow coincide plus fort \Rightarrow coincide plus fort \Rightarrow plus stable, acide plus fort \Rightarrow coincide plus fort \Rightarrow plus stable, acide plus fort \Rightarrow coincide plus fort \Rightarrow plus stable, acide plus fort \Rightarrow coincide plus fort \Rightarrow plus stable, acide plus fort \Rightarrow plu

[Barème: 1 point pour l'ordre correct, 1.5 points pour le dessin des structures de résonance, 1.5 points pour la conséquence sur l'acidité.]

5) OH OH OH OH
$$\delta^+$$
 H O répulsion moins favorable

⇒ Chaque CH₃ rend la base moins stable, donc l'acide plus faible

[Barème: 1 point pour l'ordre correct, 1.5 points pour le dessin, 1.5 points pour la conséquence sur l'acidité.]

Exercice 4 (bonus, 6 points)

Déterminez le nombre d'électrons de valence de l'ion ${\rm CO_3}^{2^{-}}$. Déterminez la(les) structures de Lewis et la géométrie de l'ion ${\rm CO_3}^{2^{-}}$. Dans cet ion, quel est l'état d'hybridation de l'atome central?

Nombre d'électrons de valence: 4 + (6*3) + 2 = 24 électrons

Structures de Lewis:

Géométrie:

3 substituants autour du carbone: trigonal planaire en accord avec VSEPR

Hybridation: trigonal, donc sp²

[Barème: 1 point pour le nombre d'électrons de valence, 3 points pour les structures de Lewis, 1 point pour la géométrie, 1 point pour l'hybridation]